Biochemical characterization of I-CmoeI reveals that this H-N-H homing endonuclease shares functional similarities with H-N-H colicins.

نویسندگان

  • M Drouin
  • P Lucas
  • C Otis
  • C Lemieux
  • M Turmel
چکیده

Endonuclease assays of the H-N-H proteins encoded by two group I introns in the Chlamydomonas moewusii chloroplast psbA gene revealed that the CmpsbA.1 intron specifies a site-specific DNA endonuclease, designated I-CMOE:I. Like most previously reported intron-encoded endonucleases, I-CMOE:I generates a double-strand break near the insertion site of its encoding intron, leaving 3' extensions of 4 nt. This enzyme was purified from Escherichia coli as a fusion protein with a His tag at its N-terminus. The recombinant protein (rI-CMOE:I) requires a divalent alkaline earth cation for DNA cleavage (Mg(2+) > Ca(2+) > Sr(2+) > Ba(2+)). It also requires a metal cofactor for DNA binding, a property shared with H-N-H colicins but not with the homing endonucleases characterized to date. rI-CMOE:I binds its recognition sequence as a monomer, as revealed by gel retardation assays. K:(m) and k(cat) values of 100 +/- 40 pM and 0.26 +/- 0.04 min(-1), respectively, were determined. Replacement of the first histidine of the H-N-H motif by an alanine residue abolishes both rI-CMOE:I activity and binding to its substrate. We propose that this conserved histidine residue plays a role in binding the metal cofactor and that such binding induces a structural modification of the enzyme which is required for DNA recognition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical and mutagenic analysis of I-CreII reveals distinct but important roles for both the H-N-H and GIY-YIG motifs

Homing endonucleases typically contain one of four conserved catalytic motifs, and other elements that confer tight DNA binding. I-CreII, which catalyzes homing of the Cr.psbA4 intron, is unusual in containing two potential catalytic motifs, H-N-H and GIY-YIG. Previously, we showed that cleavage by I-CreII leaves ends (2-nt 3' overhangs) that are characteristic of GIY-YIG endonucleases, yet it ...

متن کامل

Mechanism and cleavage specificity of the H-N-H endonuclease colicin E9.

Colicin endonucleases and the H-N-H family of homing enzymes share a common active site structural motif that has similarities to the active sites of a variety of other nucleases such as the non-specific endonuclease from Serratia and the sequence-specific His-Cys box homing enzyme I-PpoI. In contrast to these latter enzymes, however, it remains unclear how H-N-H enzymes cleave nucleic acid sub...

متن کامل

Group I intron homing in Bacillus phages SPO1 and SP82: a gene conversion event initiated by a nicking homing endonuclease.

Many group I introns encode endonucleases that promote intron homing by initiating a double-stranded break-mediated homologous recombination event. In this work we describe intron homing in Bacillus subtilis phages SPO1 and SP82. The introns encode the DNA endonucleases I-HmuI and I-HmuII, respectively, which belong to the H-N-H endonuclease family and possess nicking activity in vitro. Coinfec...

متن کامل

DNA binding and cleavage by the HNH homing endonuclease I-HmuI.

The structure of I-HmuI, which represents the last family of homing endonucleases without a defining crystallographic structure, has been determined in complex with its DNA target. A series of diverse protein structural domains and motifs, contacting sequential stretches of nucleotide bases, are distributed along the DNA target. I-HmuI contains an N-terminal domain with a DNA-binding surface fo...

متن کامل

Homing endonuclease I-TevIII: dimerization as a means to a double-strand break

Homing endonucleases are unusual enzymes, capable of recognizing lengthy DNA sequences and cleaving site-specifically within genomes. Many homing endonucleases are encoded within group I introns, and such enzymes promote the mobility reactions of these introns. Phage T4 has three group I introns, within the td, nrdB and nrdD genes. The td and nrdD introns are mobile, whereas the nrdB intron is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 28 22  شماره 

صفحات  -

تاریخ انتشار 2000